
ruBeam Documentation v1.0 beta



2

Copyright c© 2009 Emanuel Bombasaro, Christian Koch

Permission is granted to copy, distribute and/or modify the documentation under the terms
of the GNU Free Documentation License, Version 2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, look at http://www.gnu.org/copyleft/gpl.html or write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Contact address: emanuel.bombasaro@cademia.org, christian.koch@cademia.org
Homepage: http://www.rubeam.cademia.org/

http://www.gnu.org/copyleft/gpl.html
emanuel.bombasaro@cademia.org
christian.koch@cademia.org
http://www.rubeam.cademia.org/


Contents

1 ruBeam Model 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What can be done with ruBeam? . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Coordinate System Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Further Development on the ruBeam model . . . . . . . . . . . . . . . . . . . . . 7

2 ruBeam Engine 8
2.0.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.0.2 Installing ruBeam Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 ruBeam Engine Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 ruBeam Engine Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 ruBeam Components and their Commands . . . . . . . . . . . . . . . . . 12
2.2.3 ruBeam Handling Commands . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Set Node Properties [extend] . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Set Element Properties [extend] . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.6 Set Section Properties [extend] . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.7 Set System Properties [base] . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.8 Recommended Command Sequence . . . . . . . . . . . . . . . . . . . . . 24
2.2.9 Generating ruBeam input files . . . . . . . . . . . . . . . . . . . . . . . . 24

3 ruBeam Plugin 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Installing ruBeam Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Preliminaries to CADEMIA plugin development . . . . . . . . . . . . . . . . . . 27
3.3 ruBeam Plugin Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 ruBeam Plugin Components . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 ruBeam Plugin Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 ruBeam Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 ruBeam Plugin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Coordinate System Definition . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Support Symbolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 ruBeam Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS ii

3.4.5 ruBeam Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.6 ruBeam File Management . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Useful CADEMIA Features in ruBeam Plugin . . . . . . . . . . . . . . . . . . . 37
3.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Transform components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Copy components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 User Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Examples 39
A.1 Production Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Suspension Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 Advanced Examples using ruBeam engine . . . . . . . . . . . . . . . . . . . . . . 42

Index 43



Chapter 1

ruBeam Model

To start with the basics in this chapter the ruBeam model is introduced. The
ruBeam model is the core of both ruBeam engine and ruBeam plugin which
builds up the structural model, handles all the components and solves the
structure as well as preparing the results.

1.1 Introduction

ruBeam model is a simple open source 2D structural analyzer created in Java. The scope of
ruBeam model is to have a simple and platform independent structural generator and solver
which can be used in bash mode, ruBeam engine, or as plugin, ruBeam plugin, on the CAD
program CADEMIA1. Furthermore the differential equation for an element is solved generally
and so no discretization error is made.

1.1.1 What can be done with ruBeam?

• Generating a 2D Analysation Structure

• Uses Exact Solution for the Differential Equation of an Element

• Solving a Structure

• Showing Deformation and Force Results

• Used in Bash Mode; ruBeam engine, see chapter 2

• Used as Plugin; ruBeam plugin on CADEMIA, see chapter 3

• Used in Structural, Optimization and Study Processes

1.1.2 General

The ruBeam model consist of nodes, elements and loads which are totally independent from each
other when generated and form the base components of a structure. These base components
can be extended with different components extend -. . . and modified. Table 2.1 describes every
single base and extend component being part of ruBeam model. Fig. 1.1 shows the structure
of ruBeam model and how the ruBeam engine and the ruBeam plugin is linked to it.

1CADEMIA Version 1.5 b13 intermediate Copyright c© 2002-2009 B. Firmenich, www.cademia.org

www.cademia.org


1.1 Introduction 2

ruBeam
model

Nodes
base

Elements
base

Loads
base

ruBeam
plugin

ruBeam
engine

Load coupled
with elements

Load coupled
with nodes

Elements
coupled with

two nodes

common data
structure

and existence
independently

form each other

Properties
extend

CADEMIA
CAD

Command-
Interpreter

Application
bash

Figure 1.1: Schema of ruBeam model and its components

So as long as the same data structure for every type of component is guaranteed without
any problems new types of load or elements, can be developed and implemented to the ruBeam
model.

Of course it makes no sense to generat not assigned loads or elements so for this reason the
commands in ruBeam engine directly assign elements to nodes and loads to elements, this is
explained in more detail in section 2.2.

But where it is of great importance to be able to handle every single component on its
own is in the case of using strictly the CAD concept of CADEMIA. So its possible to edit,
copy, paste,. . . every single component and agreeing on the basic concept of CAD program.
When running ruBeam engine we can take advantage of editing every single component without
reassigning the component relations.



1.1 Introduction 3

1.1.3 Coordinate System Definitions

The coordinate in ruBeam model is defined as seen in Fig. 1.2.

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

Figure 1.2: Orientation of condition vectors in global coordinate system and element directional
orientation

Geometrical Coordinates

The geometrical coordinates are defined positive to left , x− axis and up, y − axis.

Displacement/Force Coordinates

The displacement/force coordinates are defined positive to right , u− axis horizontal displace-
ment H − axis horizontal force, up, w− axis vertical displacement V − axis vertical force and
clockwise , ϕ rotation M moment.

Element Coordinates

The element positive direction is always from the point i to the point k, see Fig. 1.2



1.1 Introduction 4

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

Figure 1.3: Orientation of condition vectors in local coordinate system relative to element.

Load Coordinates

Be aware that loads are linked to the directional element orientation vector, which starts at the
first node and points to the second node. This means that the loads are constructed in relation
to this vector, flipping over an element if the load is assigned to an element, leads to flipping
over the load of course too, see Fig. 1.4. What is the same for all types of loads, see Tab. 2.1
for detailed informations regarding the loads.

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

(a)

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

(b)

Figure 1.4: Load behavior for flipped over elements



1.1 Introduction 5

Node Result Vector Coordinates

The displacement coordinates are defined positive to left , u − axis horizontal displacement,
up, w − axis horizontal displacement and clockwise , ϕ.

The force coordinates are defined positive to right , H−axis horizontal force, up, V −axis
vertical force and counter clockwise , ϕ rotation M moment.
The values are stored in the following order

Yn =


ϕn

wn

un

Mn

Vn

Hn



ni
Pei

ej

ek

F

li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
niei

ej

ek

e

niei

ej

ek

x

y

Element Result Matrix Coordinates

global Matrix
Same definition like in Displacement/Force Coordinates see Fig. 1.2.
The values are sort in the following order

i 1 2 3 · · · k
uik,i uik,1 uik,2 uik,3 · · · uik,k

wik,i wik,1 wik,2 wik,3 · · · wik,k

ϕik,i ϕik,1 ϕik,2 ϕik,3 · · · ϕik,k

Mik,i Mik,1 Mik,2 Mik,3 · · · Mik,k

Vik,i Vik,1 Vik,2 Vik,3 · · · Vik,k

Hik,i Hik,1 Hik,2 Hik,3 · · · Hik,k


(1.1)

local Matrix
Same definition like in Displacement/Force Coordinates see Fig. 1.3.
The values are sort in the following order

i 1 2 3 · · · k
ūik,i ūik,1 ūik,2 ūik,3 · · · ūik,k

w̄ik,i w̄ik,1 w̄ik,2 w̄ik,3 · · · w̄ik,k

ϕ̄ik,i ϕ̄ik,1 ϕ̄ik,2 ϕ̄ik,3 · · · ϕ̄ik,k

M̄ik,i M̄ik,1 M̄ik,2 M̄ik,3 · · · M̄ik,k

Q̄ik,i Q̄ik,1 Q̄ik,2 Q̄ik,3 · · · Q̄ik,k

N̄ik,i N̄ik,1 N̄ik,2 N̄ik,3 · · · N̄ik,k


(1.2)



1.1 Introduction 6

1.1.4 Preliminaries

The basic concept of formulating and solving the differential equation for the structural system
is done following the approach given by Rubin/Schneider2. The differential equation for a
single element is solved by a series expansion of the solution function, which if enough terms
are considered, gives the exact result.

For simple load types normally less then 6 terms have to be considered to obtain the exact
solution for the differential equation. So for any element, see Fig. 1.2 the transfer matrix can
be easily formulated

uik

wik

ϕik

Hik

Vik

Mik

 =


g11 g12 g13 g14 g15 g16

g21 g22 g23 g24 g25 g26

g31 g32 g33 g34 g35 g36

g41 g42 g43 g44 g45 g46

g51 g52 g53 g54 g55 g56

g61 g62 g63 g64 g65 g66

 ·


uki

wki

ϕki

Hki

Vki

Mki

 +


gL
1

gL
2

gL
3

gL
4

gL
5

gL
6

 (1.3)

in which with some basic mathematics the deformations uik, wik, ϕik; uki, wki, ϕki can be sep-
arated from the forces Hik, Vik, Mik; Hki, Vki, Mki. g11 . . . g66 mixed element stiffness and dis-
placement properties, gL

1 . . . gL
6 element load properties. Without further explanations and the

help of condition vectors

Sik =

 Hik

Vik

Mik

 , Ski =

 Hki

Vki

Mki

 , Vi =

 uik

wik

ϕik

 , Vk =

 uki

wki

ϕki

 , S0
ik =

 gL
...

gL
...

gL
...

 (1.4)

we can express the base equation for the transfer matrix approach for any element s

Sik = Kis ·Vi + Kik ·Vk + S0
ik

Ski = Kks ·Vk + Kki ·Vi + S0
ki

(1.5)

where Vi, Vk are the displacement vectors, S0
ik, S

0
ki the load vectors of the element s; Kis, Kik, Kks, Kki

can be seen as stiffness matrixes of the element s.

So for every node of the structure we can formulate the equilibriums conditions

Kii ·Vi +
∑

k

Kik ·Vk + S0
i = 0 (1.6)

with

Kii =
∑

k

Kis (1.7)

and

S0
i =

∑
k

S0
ik + Se

i (1.8)

where
∑

k means the sum over all elements connected to the node i with opposite element node
k and Se

i is on the node applied load vector, S0
ik, S0

ki are the element node forces caused by the
element loads.

2Baustatik Theorie I. und II. Ordnung, 4. Auflage, Werner Verlag 2002
The book is as fare as known only published in German; some papers dealing with this argument exists in
English.



1.2 Further Development on the ruBeam model 7

1.1.5 Dimensions

ruBeam model is dimension free, which means that as long as combinations of different dimen-
sions are conform the result dimension will be directly derivable from the input dimensions.
As input dimensions we only have Length and Force which other input parameters have to
be deviated. The Angle as input and output parameter is generally [◦] for loads, [rad] for
rotations and boundary conditions, this is exactly specified for the very ruBeam component.

Example

We use for Length [m] and for Force [N], the young’s modulus turns to be [N/m2], the
moment [Nm] and so on. So if once decided for on unit system every value has to be set in the
same unit system.

1.2 Further Development on the ruBeam model

Elements For the moment it is better to use always hk < 2hi and start with the bigger section
dimension at node i of the element, this purpose will be removed in the following versions
of ruBeam.

Element description function In order to obtain exact result even for conical sections of all
different types the element description function will be updated.

Theory of Second Order Due to consider pre deformations of the elements second order
effects will be taken into consideration.

Stability Stability of elements and structures will be analysed, buckling shapes and buckling
loads of the structure will computed.

Dynamics Linear dynamic analysation of structures computation of Eigen frequencies and
Eigen shapes of the system.



Chapter 2

ruBeam Engine

In this chapter introduction to the ruBeam engine is given as well as the
Installation Instructions for the ruBeam engine, a Quick Start Guide for the
ruBeam engine, and a full documentation of all components included in
ruBeam model.
If you are interested in the ruBeam plugin you can directly go to chapter 3
ruBeam Plugin on page 26.

2.0.1 General

ruBeam engine is the link of ruBeam model to a command-line interpreter and uses its own
language. ruBeam engine connects the loads directly to the elements in order to prevent losing
the overview of all components being part of the structure or not.

Figure 2.1: Screenshot of the running ruBeam engine in bash mode

In this chapter the ruBeam engine is described. In the next chapter the ruBeam plugin on
CADEMIA is explained. The documentation is concluded with a set of examples and some
special usage of the ruBeam engine combined with MATLAB is shown. For detailed information
of the Java source code see java doc.



2.1 ruBeam Engine Quick Start 9

2.0.2 Installing ruBeam Engine

The installation of the ruBeam engine is quite easily done with a few steps.

System Requirements: Java SE Development Kit (JDK) or Java SE Runtime Environment
(JRE) Version 5.0 and higher must be installed on the system in order to run ruBeam
properly.

Linux, Mac OS, Windows

1. Make sure Java is installed and runs properly, type java in a command-line interpreter
of your system in order to see if Java is running on the system.

2. Generate a workspace folder.

3. Copy the ruBeam engine file ruBeamEngine.jar into that folder.

4. Lunch any prefered command-line interpreter no graphical user interface is needed.

5. Type java -jar ruBeamEngine.jar [-options] arg with any arguments, see 2.2.1,
and press return.

6. With help; a list of all commands contained in ruBeam engine are shown.

7. Enjoy driving the ruBeam engine.

2.1 ruBeam Engine Quick Start

1. Lunch rubeam Engine
use a command-line interpreter or call it out from any other program.

2. Create a Structure
or use a ruBeam import file.

3. Analyse the Strucutre
and export the results to the screen or to a file.

2.2 ruBeam Engine Language

The ruBeam engine Language is a easy to use language, where with a set of very simple com-
mands the hole system can be generated solved and the system and its results exported into
ascii files. Firstly some basics are given, followed by the basic components, section 2.2.2,
and the handling commands, section 2.2.3. In the section 2.2.8 the recommended command
sequence is shown.

2.2.1 Basics

The basic idea of ruBeam engine language is that a component is created with default properties
and afterwards its wished properties are set.



2.2 ruBeam Engine Language 10

Be careful it can happen that the system will be analyzed with not proper set
properties!

Commends

Commends can be added line wise with a // symbol at the beginning of every line supposed to
be ignored by the ruBeam engine.

End of Command

Commands are ended with a ; so more than one command can be written in one line.

Help

With help; a short help document is displayed containing a list off all commands.

Mathematical Expression

• You can compute values by simple writing the mathematical expression, like 1+4 will use
the value 5 for the set variable.

• So + stands for adding, - for subtracting, * for multiplying, / for dividing and ^ for power.

• Furthermore you can use 2e10 for exponential number input, of course 2E+10 ore 2E-10

is accepted.

• For performing mathematical calculations calc expression;, e.g. calc 1+2^(2.2/4);,
can be called every time without taking any effect on the structural model.

• To prevent round of errors due to integer numbers always use at least one value in the
decimal notation 1.0.

Import/Export

• With import "filename"; the components (in the file filename; can be absolute path)
will be added to the structure and all handling commands (in the file filename) will
perform its operations on the structure, if no structure exist a new one will be generated.

• When calling the ruBeam engine with -f filename in the shell the file will be read directly
after start up of ruBeam engine and the engine will quit after reading and processing the
input file.

• With export "filename"; the hole structure is exported to the file filename, can be
absolute path, in form of a sequence of ruBeam engine commands. If a file with the same
name exist it will be overwritten.

• With write type "filename"; if type is results all results will be written to the file
filename; if type is structure the structures informations are written to the file. If no
file is specificated the result will just be shown. If a file with the same name exist it will
be overwritten.



2.2 ruBeam Engine Language 11

Show

• With show; the hole components in the current workspace are shown.

Clear, Remove

• With clear; the hole structure is deleted without any system prompt, and is not un-
doable!

• With remove type name; the component with the type, node, element, nodalload, ele-
mentload and the name will be removed. This command is not undoable.

• When a node with linked elements is removed all linked elements will be removed, if an
element is deleted the nodes won’t be deleted.

Analysing the structure, Clean

• With analyse; the structure will be analysed and all values for the computation of the
results exist.

• With clean; the analysation is cleaned, which means no results exist anymore.

Results

• With results type name global/local; the result for the component node or element
and with global for global element condition vector and local for the local element
condition vector, will be displyed on the screen. When component node is chosen for
global/local nothing has to be set and the commands end after the nodes name.

• With optiresultv nodename "filename"; the displacement vector of the node will be
saved to the file filename without any additional information. If a file with the same
name exists it will be overwritten.

Exit

• With exit; ruBeam engine will be quit, be aware all data are lost and no save prompt
will be sent.



2.2 ruBeam Engine Language 12

2.2.2 ruBeam Components and their Commands

Table 2.1: Components in the ruBeam application

Figure Description
ruBeam Components

ni
P

α
ei

ej

ek

F

α
li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
niei

ej

ek

e

niei

ej

ek

Component: Node
2D, 3 degrees of freedom, [base]

Description: The component node is described by its coor-
dinates x y and a designate name name.

The node has 3 degrees of freedom; horizontal, vertical,
rotation [rad].

Nodes are use to construct elements, of course the num-
ber of nodes needed by the element must exist.

Nodes can be used to define boundary conditions for the
structure.

Node loads can be applied on nodes.

Command:
addnode x y name;

x y coordinates of node
name wished name of node

Command Example:
addnode 0.1 1.2 a;

Continued on next page



2.2 ruBeam Engine Language 13

Table 2.1 – continued from previous page
Figure Description

∆n

li

i

k
lj

i

k

εe = const.

hi

s

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

Component: Element
conical, flexible, linear elastic [base]

Description: Element from point i to k, with linear elastic
material property; young’s modulus.

Element is linear conic in high, so the height has to
be set at the beginning and the end of the element,
see element sections for further informations and section
1.2.

Section can be set as element properties.

Element loads can be applied on elements.

Command:
addelement ni nk name;

ni node for point i
nk node for point k
name wished name of element

Command Example:
addelement a b e1;

ruBeam Element Sections

∆n

li

i

k
lj

i

k

εe = const.

hi

b

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

E

Ai,Ii

Ak

Component: Section
conical, general [base]

Description: General conical element section, fits with con-
ical elements.

The element is linear conical in area so the area can be
set at the beginning and end.

Command:
addgensection Ai Ak Ii E name;

Ai area at the beginning of the element
Ak area at the end of the element
Ii moment of inertia at the beginning of the element
E young’s modulus of the element material
name wished name of section

Command Example:
addrecsection 0.03 0.04 0.0023 2e10 sg1;

Continued on next page



2.2 ruBeam Engine Language 14

Table 2.1 – continued from previous page
Figure Description

∆n

li

i

k
lj

i

k

εe = const.

hi

b

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

E

Ai,Ii

Ak

Component: Section
conical, rectangular [base]

Description: Rectangular conical element section, fits with
conical elements.

The element is linear conical in high so the high can be
set at the beginning and end.

Command:
addrecsection hi hk b E name;

hi high at the beginning of the element
hk high at the end of the element
b breadth of the element
E young’s modulus of the element material
name wished name of section

Command Example:
addrecsection 0.5 0.6 0.3 2e10 sr1;

∆n

li

i

k
lj

i

k

εe = const.

hi

b

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

E

Ai,Ii

Ak

Component: Section
conical, I-profile [base]

Description: I shaped profile conical element section, fits
with conical elements.

The element is linear conical in height so the height can
be set at the beginning and end.

Command:
addiprofsection hi hk s b t E name;

hi height at the beginning of the element
hk height at the end of the element
s thickness of the elements web
b breadth of the elements flange
t thickness of the elements flange
E young’s modulus of the element material
name wished name of section

Command Example:
addiprofsection 0.5 0.6 0.01 0.3 0.02 2e10 si2;

Continued on next page



2.2 ruBeam Engine Language 15

Table 2.1 – continued from previous page
Figure Description

∆n

li

i

k
lj

i

k

εe = const.

hi

b

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

E

Ai,Ii

Ak

Component: Section
conical, sandwich [base]

Description: Sandwich means the web has no bending stiff-
ness only flanges are considerted.

Sandwich conical element section, fits with conical ele-
ments.

The element is linear conical in height so the height can
be set at the beginning and end.

Macro Command:
addsandsection hi hk b t E name;

hi height at the beginning of the element
hk height at the end of the element
b breadth of the elements flange
t thickness of the elements flange
E young’s modulus of the element material
name wished name of section

Command Example:
addsandsection 0.5 0.6 0.3 0.02 2e10 ss3;

ruBeam Nodal Loads

ni
P

α
ei

ej

ek

F

α
li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
niei

ej

ek

e

niei

ej

ek

Component: nodal load
concentrated, angular [base]

Description: Concentrated off horizontal angular nodal
load, applied on a node.

Angel positive counter clockwise, load positive radial
from node.

Command:
addnodalloadang ni P alpha name;

ni name of node
P value of load
alpha value of load off horizontal angle in [◦]
name wished name of load

Command Example:
addnodalload a 1000 10 P1;

Continued on next page



2.2 ruBeam Engine Language 16

Table 2.1 – continued from previous page
Figure Description

ni
P

α
ei

ej

ek

F

α
li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
niei

ej

ek

e

niei

ej

ek

Component: nodal moment
[base]

Description: Nodal moment, applied on a node.

Moment positive clockwise.

Command:
addnodalmoment ni M name;

ni name of node
M value of moment
name wished name of load

Command Example:
addnodalmoment a 1300 Mn1;

ruBeam Element Loads

ni
P

α
ei

ej

ek

F

α
li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
niei

ej

ek

e

niei

ej

ek

Component: element concentrated load
angular to element longitudinal axis [base]

Description: Concentrated off horizontal angular element
load, applied on an element.

Angel positive counter clockwise from element direction
xs, load positive radial from point.

Command:
addelementconload e F alpha li name;

e name of element
F value of load
li load distance from element node i
alpha value of load off horizontal angle in [◦]
name wished name of load

Command Example:
addelementconload e1 1000 1.1 12.3 F1;

Continued on next page



2.2 ruBeam Engine Language 17

Table 2.1 – continued from previous page
Figure Description

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

Component: element uniform distributed load
normal to element longitudinal axis [base]

Description: Uniform distributed element load, applied on
an element, orientated right normal to element direction
xs.

Command:
addelementunidisloadnor e q name;

e name of element
q value of load
name wished name of load

Command Example:
addelementunidisloadnor e1 10000 q1;

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element uniform distributed load sectional
normal to element longitudinal axis [base]

Description: Uniform distributed element load sectional,
applied on an element, orientated right normal to el-
ement direction xs.

Command:
addelementunidisloadsecnor e dq li lj name;

e name of element
dq value of load
li load distance from element node i
lj load distance from element node i
name wished name of load

Command Example:
addelementunidisloadsecnor e1 10000 1.1 2.3 dq1;

Continued on next page



2.2 ruBeam Engine Language 18

Table 2.1 – continued from previous page
Figure Description

∆n

li

i

k
lj

i

k

εe = const.

hi

s

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

Component: element uniform sectional distributed load
directional to element longitudinal axis [base]

Description: Uniform distributed element load sectional,
applied on an element, orientated directional contrary
to element direction xs.

Command:
addelementunidisloadsecdir e dn li lj name;

e name of element
dn value of load
li load distance from element node i
lj load distance from element node i
name wished name of load

Command Example:
addelementunidisloadsecdir e1 3000 0.4 1.6 dn1;

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element moment
bending uniaxial, major axis [base]

Description: Moment at point li of element directional to
xs, moment positive clockwise.

Command:
addelementmoment e M li name;

e name of element
M value of moment
li load distance from element node i
name wished name of load

Command Example:
addelementmoment e1 1200 2.3 Me1;

Continued on next page



2.2 ruBeam Engine Language 19

Table 2.1 – continued from previous page
Figure Description

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element uniform moment sectional
bending uniaxial, major axis [base]

Description: Uniform distributed element moment sec-
tional, applied on an element, positive clockwise.

Command:
addelementunidismomentsec e dm li lj name;

e name of element
dm value of moment
li load distance from element node i
lj load distance from element node i
name wished name of load

Command Example:
addelementunidismomentsec e1 2300 0.5 1.1 dm1;

∆n

li

i

k
lj

i

k

εe = const.

hi

s

hk

xS xS

hi

b

hk

s
t

hi

b

hk

s = 0

t
i

k

xS

Section

EE

E

u

w

Component: element prestressing
longitudinal prestressing [base]

Description: Prestress in manner of applying a constant
strain of the value εe a positive εe will cause pressure in
the element, a negative εe tension in the element.

Command:
addelementprestress e eps name;

e name of element
eps value of prestress
name wished name of load

Command Example:
addelementprestress e1 11e+6 pS1;

Continued on next page



2.2 ruBeam Engine Language 20

Table 2.1 – continued from previous page
Figure Description

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element leap
normal to element longitudinal axis [base]

Description: Leaps the element orientated right normal to
the element direction at point li with the given value.

Command:
addelementleapnor e we li name;

e name of element
we value of leap
li load distance from element node i
name wished name of leap

Command Example:
addelementleapnor e1 0.01 1.2 lwe1;

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element leap, directional to element longitudi-
nal axis [base]

Description: Leaps the element orientated directional to the
element direction at point li with the given value.

Command:
addelementleapdir e ue li name;

e name of element
ue value of leap
li load distance from element node i
name wished name of leap

Command Example:
addelementleapdir e1 0.21 1.4 lue1;

Continued on next page



2.2 ruBeam Engine Language 21

Table 2.1 – continued from previous page
Figure Description

we
li

i

k

Φe

li

i

k

xS
xS

Ue
li

i

k

xS

Meli

i

k

xS

∆q

li

i

k
lj

xS

∆m

i

k
lj

li

xS

e e

e e

e e

Component: element bend
bend uniaxial, major axis [base]

Description: Bends the element at point li positive counter
clockwise.

Command:
addelementbend e phie li name;

e name of element
phi value of bend [rad]
li load distance from element node i
name wished name of leap

Command Example:
addelementbend e1 12.3 0.4 lphie1;

2.2.3 ruBeam Handling Commands

2.2.4 Set Node Properties [extend]

All node handle commands are operated on the node named name.

Set Name
setnodename name newname

Sets the name of the node to the name newname.

Set x-Coordinate
setnodex name newX;

Sets the x-coordinate to newX.

Set y-Coordinate
setnodey name newY;

Sets the y-coordinate to newY.

Set Coordinates
setnodecoord name newX newY;

Sets the node coordinate to newX and newY.

Values for Constraints
if 0, this degree of freedom is fixed
if ?, this degree of freedom is free, which is default setting, ? will create a NaN so of course
instead of ?, NaN can be typed case sensitiv.
if number, this degree of freedom is imposed with the value number, for rotation ϕ the
value must be set in [rad].

Set x-Constraint
setnodeconstx name newfx;

Sets the node x-constraint to newfx.



2.2 ruBeam Engine Language 22

Set y-Constraint
setnodeconsty name newfy;

Sets the node y-constraint to newfy.

Set phi-Constraint
setnodeconstphi name newfphi;

Sets the node phi-constraint to newfphi.

Set Constraints
setnodeconsts name newfphi newfy newfx;

Sets the node constraints to newdPhi newdY newdX.

Set Fixed
setnodefixed name;

Sets all node constraints to 0.

2.2.5 Set Element Properties [extend]

All element handle commands are operated on the element named name.

Set Name
setelementname name newname;

Sets the name of the element to the name newname.

Set Node i
setelementnodei name newnodei;

Sets the node i of the element to the node with the name newnodei.

Set Node k
setelementnodek name newnodek;

Sets the node k of the element to the node with the name newnodek.

Set Section
assignsection section name

Sets the element section to the section with the name section.

Set Hinge Node i
setelementhingei name newstate;

Sets the element node i as hinged when newstate=true, default is newstate=false

Set Hinge Node k
setelementhingek name newstate;

Sets the element node k as hinged when newstate=true, default is newstate=false

2.2.6 Set Section Properties [extend]

All section properties con only be set if the section name has the specific value, otherwise the
value will not be set!

Set Name
setsectionname name newname

Sets the name of the section to the name newname.



2.2 ruBeam Engine Language 23

Set high i
setsectionhi name newhi

Sets the value hi of the section to the value newhi.

Set high k
setsectionhk name newhk

Sets the value hk of the section to the value newhk.

Set (flange) breadth b
setsectionb name newb

Sets the value b of the section to the value newb.

Set web thickness s
setsections name news

Sets the value s of the section to the value news.

Set flange thickness t
setsectiont name newt

Sets the value t of the section to the value newt.

Set Young’s Modulus
setsectione name newE

Sets the element young’s modulus to newE.

Set area i
setsectionai name newAi

Sets the value Ai of the section to the value newAi.

Set area k
setsectionak name newAk

Sets the value Ak of the section to the value newAk.

Set moment of inertia at i
setsectionii name newIi

Sets the value Ii of the section to the value newIi.

2.2.7 Set System Properties [base]

Visualize Steps
setvisualizesteps value

Sets the number of visualize steps to value, this command is not affecting the structure
when working with the ruBeam engine.

Result Steps
setresultsteps value

Sets the number of element result intermediate steps to value, this command is not
affecting the analysation, only the amount of inter steps when computing the element
condition matrix. Only integer numbers can be set.

Analyse automatically
autoanalyse state

Sets if the analysation is performed automatically after every command, state on for yes
or off for not.



2.2 ruBeam Engine Language 24

2.2.8 Recommended Command Sequence

Following this sequence guaranties to not forget any component and have a full functional
structure! Of course any commands can be part of the file as long as they manipulated existing
components.

Preamble

1. Basic Informations

Corpus

1. Nodes; addnode

2. Elements; addelement

3. Element Hinges; setelementhinge...

4. Constraints; setnodeconsts

5. Sections; add...section

6. Section Assignement; assignsection

7. Nodal Loads; addnodal...

8. Element Load; addelement...

Addendum

1. Visualize Steps; setvisualizesteps

2. Analyse; analyse

2.2.9 Generating ruBeam input files

When generating input files which should work with both, ruBeam engine and ruBeam plugin
and are not created by ruBeam only this commands are allowed to be used. If the input file
is only used with the ruBeam engine all commands described in section 2.2 can be used. At
any time a redundancy free export file can be created by using the export command either in
ruBeam engine or ruBeam plugin.

Components

• addnode

• addelement

• addgensection

• addrecsection

• addiprofsection

• addsandsection

• addconloadang

• addnodalloadang

• addelementconload

• addunidistribloadnor

Set Node Properties

• setnodename

• setnodex

• setnodey

• setnodeconstx

• setnodeconsty

• setnodeconstphi

• setnodeconsts

• setnodefixed

Set Element Properties

• setelementname



2.2 ruBeam Engine Language 25

• setelementnodei

• setelementnodek

• assignsection

• setelementhingei

• setelementhingek

Set Section Properties

• setsectionname

• setsectionai

• setsectionak

• setsectionb

• setsectione

• setsectionhi

• setsectionhk

• setsectionii

• setsections

• setsectiont

Set Element Properties

• show

• analyse

• setvisualizesteps

• autoanalyse



Chapter 3

ruBeam Plugin

This chapter deals with the ruBeam plugin. After introducing CADEMIA
plugin development in general, the architecture and the functionality of the
ruBeam plugin are described.

3.1 Introduction

3.1.1 General

“As a solution, a new platform for geometry-oriented AEC applications has been de-
veloped at Bauhaus University Weimar: CADEMIA. While CADEMIA was originally written
for teaching and research purposes it is now available as open source software. A long
time experience in the development of these systems in the building industry forms the base
on which CADEMIA is built. [. . . ] CADEMIA is a modular constructed software and offers
lots of possibilities to integrate other functionalities. Due to this flexibility CADEMIA
can easily be custom-modeled to fit individual needs. CADEMIA is programmed in JAVA and
therefore platform independent. This way it serves as an inexpensive alternative to proprietary
CAD software.”1

Figure 3.1: Screenshot of the running ruBeam Plugin on CADEMIA

1see http://www.cademia.org

http://www.cademia.org


3.2 Preliminaries to CADEMIA plugin development 27

3.1.2 Installing ruBeam Plugin

In order to add the ruBeam plugin to CADEMIA proceed with the following steps.

System Requirements: Java SE Development Kit (JDK) or Java SE Runtime Environment
(JRE) Version 5.0 and higher must be installed on the system in order to run ruBeam
properly.

Linux, Mac OS, Windows

1. Lunch CADEMIA.

2. Use menu Misc → Add plugin and the select the downloaded and extracted plugin file
ruBeamPlugin.cademia_plugin.

3. Enjoy using the ruBeam plugin.

3.2 Preliminaries to CADEMIA plugin development

The CADEMIA platform consists of four subsystems:

GUI Command Model* 1

InputDevice Cmd Component
* * *

RuBeam
Menu

RuBeam
Inspector

Add
Node

Add
Element

Comp
Node... Comp

Element ...

CADEMIA Platform

ruBeam Plugin

1 1

GUI Command Model* 1
CADEMIA Platform

View

Component

Component
Node

Component
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

Figure 3.2: CADEMIA platform architecture

Graphical user interface (GUI) In the GUI the user can issue commands via text input,
menu bar, tool bar and mouse input. The model is visualized by the view subsystem that
is part of the GUI.

Command subsystem Commands are internally represented by text based on the CADEMIA
command language. The model is edited via commands that can be undone and redone.

Model subsystem The model includes application objects that have a geometric representa-
tion and can be processed via commands.

View subsystem The graphical view of the model objects is handled by the view subsystem.

A more detailed introduction to CADEMIA plugin development can be found on
http://www.cademia.org/frontend/index.php?page_id=10615.

http://www.cademia.org/frontend/index.php?page_id=10615


3.3 ruBeam Plugin Architecture 28

3.3 ruBeam Plugin Architecture

In this section the main packages of the ruBeam plugin are introduced, see Fig. 3.3.

GUI Command Model* 1

InputDevice Cmd Component
* * *

RuBeam
Menu

RuBeam
Inspector

Add
Node

Add
Element

Comp
Node... Comp

Element ...

CADEMIA Platform

ruBeam Plugin

1 1

GUI Command Model* 1
CADEMIA Platform

View

cib.cad.db.comp.Component

Component
Node

Component
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

ComponentElement
UniDistribLoadNor

rubeam.gui rubeam.cmds rubeam.cmps

ComponentElement
ConLoadAngrubeam.cmps

cib.util.cmd.Cmd

Add
Node

Add
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

ComponentElement
UniDistribLoadNor

ComponentElement
ConLoadAng

rubeam.cmps

Remove
Node

SetNode
Constraints

Remove
Element

Figure 3.3: ruBeam Plugin architecture

rubeam.gui This package includes the classes for the plugin menu (RuBeamMenu) and for the
ruBeam Inspector (RuBeamInspector). Both the menu and the inspector use a CADEMIA
input device (InputDevice) in order to issue ruBeam plugin commands.

rubeam.cmps This package contains structural ruBeam plugin components (e.g. Compo-
nentNode, ComponentElement, . . . ) that are vizualized in the graphical user interface.

rubeam.cmds In this package the classes representing ruBeam plugin commands for editing
the structure (e.g. AddNode, AddElement, . . . ) are summarized.

3.3.1 ruBeam Plugin Components

According to the CADEMIA architecture the model includes geometric components that have
to implement the component interface defined in cib.cad.db.comp.Component. For this reason
all ruBeam plugin components are implemented as CADEMIA components. Fig. 3.4 illustrates
the package rubeam.cmps consisting of ruBeam plugin components.

GUI Command Model* 1

InputDevice Cmd Component
* * *

RuBeam
Menu

RuBeam
Inspector

Add
Node

Add
Element

Comp
Node... Comp

Element ...

CADEMIA Platform

ruBeam Plugin

1 1

GUI Command Model* 1
CADEMIA Platform

View

cib.cad.db.comp.Component

Component
Node

Component
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

ComponentElement
UniDistribLoadNor

rubeam.gui rubeam.cmds rubeam.cmps

ComponentElement
ConLoadAngrubeam.cmps

cib.util.cmd.Cmd

Add
Node

Add
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

ComponentElement
UniDistribLoadNor

ComponentElement
ConLoadAng

rubeam.cmps

Remove
Node

SetNode
Constraints

Remove
Element

Figure 3.4: ruBeam Plugin Components



3.3 ruBeam Plugin Architecture 29

While the CADEMIA component interface defines the visual representation of a ruBeam
plugin component in the CAD environment, geometry information and structural properties
are stored in the ruBeam components introduced in secion 2.2.2. For this reason each structural
ruBeam component is mapped to or wrapped by a ruBeam plugin component. Tab 3.1 illustrates
this mapping for the components currently implemented in the ruBeam plugin.

Table 3.1: Component mapping

ruBeam component ruBeam plugin component
Node ComponentNode
Element ComponentElement
NodalLoadAng ComponentNodalLoadAng
ElementUniDistribLoadNor ComponentElementUniDistribLoadNor
ElementConLoadAng ComponentElementConLoadAng

3.3.2 ruBeam Plugin Commands

According to the CADEMIA architecture the model is processed by commands that have to
implement the Cmd interface defined in cib.util.cmd.Cmd. Therefore, all ruBeam plugin com-
mands are implemented as CADEMIA commands. Fig. 3.5 illustrates the package rubeam.cmds
containing the ruBeam plugin commands.

GUI Command Model* 1

InputDevice Cmd Component
* * *

RuBeam
Menu

RuBeam
Inspector

Add
Node

Add
Element

Comp
Node... Comp

Element ...

CADEMIA Platform

ruBeam Plugin

1 1

GUI Command Model* 1
CADEMIA Platform

View

cib.cad.db.comp.Component

Component
Node

Component
Element

Component
NodalLoad

Component
ElementLoad

Component
NodalLoadAng

ComponentElement
UniDistribLoadNor

rubeam.gui rubeam.cmds rubeam.cmps

ComponentElement
ConLoadAngrubeam.cmps

cib.util.cmd.Cmd

Add
Node

Add
Element

Add
Section

AddNodal
LoadAng

AddLinear
GeneralSection

Assign
NodalLoad

Remove
NodalLoad

rubeam.
cmds.node

Remove
Node

SetNode
Constraints

Remove
Element

Assign
Section

SetElement
HingeI

AddElement
UniDistribLoadNor

AddElement
ConLoadAng

Assign
ElementLoad

Remove
ElementLoad

rubeam.
cmds.elm

rubeam.
cmds.sec

rubeam.
cmds.nodeload

rubeam.
cmds.elmload

...... ......

...

Figure 3.5: ruBeam Plugin Commands

In contrast to the ruBeam commands running directly on the ruBeam structure (see section
2.2.9) the ruBeam plugin commands run inside the CADEMIA environment and are therefore
undoable and redoable.



3.4 ruBeam Plugin Functionality 30

3.3.3 ruBeam Inspector

The CADEMIA architecture allows to issue commands via an input device defined in cib.cad.ker-
nel.InputDevice. Each user interaction in the ruBeam inspector (e.g. in the node table) is
represented as a ruBeam plugin command that is issued via the inspector’s input device. Fig.
3.6 illustrates the inpector (RuBeamInspector) and the related classes.

cib.cad.kernel.InputDeviceAdapter

RuBeamInspector

cib.cad.kernel.InputDevice

1

javax.swing.JTabbedPane
1

javax.swing.JScrollPane
*

1
javax.swing.JTable

Figure 3.6: ruBeam Inspector

3.4 ruBeam Plugin Functionality

3.4.1 General

There are three ways of using ruBeam on CADEMIA

• One is to type all the commands on by on into the CADEMIA command line.

• The more common way is to use the ruBeam plugin Menu and

• the most fashionable way is to use the ruBeam plugin Inspector window.

In this section the coordinate system is redefined in order to be compatible with the CADEMIA
coordinate system and the new symbolism of supports is explained. Furthermore, the Menu
and the ruBeam Inspector are described. The available ruBeam plugin commands are listed in
section 2.2.9.

3.4.2 Coordinate System Definition

In order to be consistent in the logical behaviour of the structural deformation the coordinate
system orientation in the ruBeam plugin is changed slightly, be aware that this is just a changing
in visualization the base computation coordinate system used in ruBeam model is not changed
at all!

What was done is to change the orientation of the horizontal displacement u−axis in order
to follow the same direction as the CADEMIA defined positive to right , x−axis, see Fig. 3.7.



3.4 ruBeam Plugin Functionality 31

i

k

x

y

M, φxS

 __
M, φik

H, u

V, w

__
N,

__
Q, 

i

k

NII

NII

wS

e

Section

e

i

k

x

y

Mik

φik

Hik

Vik

wik

e

uik

φki

wki

uki

Mki

Hki

Vki

__w

_u xS

k

ψi

i

x

y

φik

wik

e

uik

M
N

Q

xS

i

kq

xS

k

i

q

xS

uik,v

uki,v

Figure 3.7: Orientation of condition vectors in global coordinate system and element directional
orientation

But again this is only a change in the visualization and input parameter orientation. If
the node constraint value dx is set positive in the ruBeam plugin, following the visualization
schema in Fig. 3.7 the command will give back a negative value to the ruBeam model.

3.4.3 Support Symbolism

The support symbolism was recreated in ruBeam plugin, too. It was tried to find a new and
more logical symbolism for the bounder conditions, supports, of the structural model.

ni
Pei

ej

ek

F

li

i

k

xS

a b c

d e f

g h i

j k l

H

V

M

M
ni

ei

ej

ek

e

ni
ei

ej

ek

x

y

Figure 3.8: New symbolism of supports used
in ruBeam plugin

Case dϕ dy dx
(a) 0 0 0
(b) 0 0 val
(c) 0 val 0
(d) 0 val val
(e) ? 0 0
(f) ? 0 val
(g) ? val 0
(h) ? val val
(i) val 0 0
(j) val 0 val
(k) val val 0
(l) val val val



3.4 ruBeam Plugin Functionality 32

To make it even more clear all combinations are shown in Fig. 3.8 and the set values for
the node shown in table beside Fig. 3.8. Where ? means that this degree of freedom is set free
and val means that this degree of freedom is set to a special value, 0 of course means fixed. If
nothing is set for the displacements no line will appear, if no constraint is set at all for a node
even the circle will not be visible.

3.4.4 ruBeam Menu

Plugin menu ruBeam

Analyse analyses the
structure

Ananlyse automatically
when turned on the
structure will be
analysed after every
command automati-
cally

Visualize step number
sets the visualize step
number

Show inspector shows
the ruBeam inspector
window, see section
3.4.5

Import Macro imports a
ruBeam macro file

Export Macro exports a
ruBeam macro file

Info shows ruBeam Plugin
info



3.4 ruBeam Plugin Functionality 33

Menu item Nodes

Nodes → Add adds a
node to the workspace

Nodes → Edit shows the
node feature dialog

Nodes → Set constraints
sets the node con-
straints

Menu item Elements

Elements → Add adds
an element to the
workspace

Elements → Edit shows
the element feature
dialog

Menu item Sections

Sections → Add adds a
new section to the
workspace

Sections → Assign
assigns a section to
elements

Sections → Remove
removes section



3.4 ruBeam Plugin Functionality 34

Menu item Nodal loads

Nodal loads → Add
adds a new nodal load
to the workspace

Nodal loads → Edit
shows the nodal load
feature dialog

Nodal loads → Assign
assigns nodal loads to
one node

Menu item Element loads

Element loads → Add
adds a new element
load to the workspace

Element loads → Edit
shows the element
load feature dialog

Element loads → Assign
assigns element loads
to one element

3.4.5 ruBeam Inspector

Inspector Tab Nodes

Nodes Tab displays all
nodes in the workspace, all
properties can be set, [+]
button adds a node, [–], [×]
button removes the selected
line in the table.



3.4 ruBeam Plugin Functionality 35

Inspector Tab Elements

Elements Tab displays all
elements in the workspace,
all properties can be set, [+]
button adds a element, [–],
[×] button removes the se-
lected line in the table.

Inspector Tab Sections

Sections Tab displays all
sections in the workspace
type wise in different sub-
tabs, all properties can be
set, [+] button adds a sec-
tion of the selected section
subtab, [–], [×] button re-
moves the selected line in
the table, [↘ ↖] button as-
signs a section to one ele-
ment.

Inspector Tab Nodal loads

Nodal loads Tab dis-
plays all nodal loads in the
workspace type wise in dif-
ferent subtabs, all proper-
ties can be set, [+] but-
ton adds a nodal load of
the selected nodal load sub-
tab, [–], [×] button removes
the selected line in the ta-
ble, [↘ ↖] button assigns
selected nodal loads in the
workspace to one node.



3.4 ruBeam Plugin Functionality 36

Inspector Tab Element loads

Element loads Tab dis-
plays all element loads in
the workspace type wise in
different subtabs, all prop-
erties can be set, [+] button
adds a element load of the
selected element load sub-
tab, [–], [×] button removes
the selected line in the ta-
ble, [↘ ↖] button assigns se-
lected element loads in the
workspace to one element.

Inspector Tab Structure

Structure Tab displays
the structure data, the vi-
sualize steps can be set,
which do not influence in
any way the structure data
view, [Structure] button
allows to import, export a
ruBeam macro file and to
save the structure tab con-
tent to a HTML file for
later use, with Clear the
structure will be cleared all
ruBeam components will be
deleted.

Inspector Tab Results

Result Tab displays the
structure result data, the re-
sult steps can be set, [�]
button refreshes the view,
[Export HTML] saves the
result tab view to a HTML
file for later use.



3.5 Useful CADEMIA Features in ruBeam Plugin 37

3.4.6 ruBeam File Management

ruBeam plugin allows to use two different file types

CADEMIA files normal CADEMIA files where both ruBeam and CADEMIA components
are saved in one file, via File → Save

ruBeam macro files which only contain the ruBeam components and can be used with the
ruBeam engine too, this files guarantee an upwards compatibility to newer ruBeam ver-
sions.

3.5 Useful CADEMIA Features in ruBeam Plugin

In this section a few useful CADEMIA features are introduced in order to emphasize how the
ruBeam plugin makes use of existing CAD functionality. To learn more about the CADEMIA
features described below, please refer to the CADEMIA Online Help (Menu Help → Help
contents).

3.5.1 Construction

In order to add a node, an element or a load component to the structure usually points have
to be constructed. The CADEMIA point construction processor allows four different methods
that are to be selected via the context menu Settings :

Snap The point is constructed by combining the methods Pick, Grid, Digitze. The priority is
first Pick (if a point is found), then Grid (if a grid point is found inside the pick box) and
then Digitize (if nothing else is found).

Pick The point is constructed by picking/referring to existing points emphasized in the mi-
croscope.

Grid The point is constructed on the basis of the rectangular grid. It automatically moves to
the nearest grid point. The grid can be redefined via menu Window → Set grid.

Digitize The point is digitized on the basis of the current mouse position.

3.5.2 Transform components

A major CAD functionality concerns the transformation of geometry. In CADEMIA the ruBeam
plugin components can be transformed by applying different affine transforms:

Translate A ruBeam plugin component is translated about a vector.

Totate A ruBeam plugin component is rotated about an angle and a point.

Scale A ruBeam plugin component is scaled about a point.

Mirror A ruBeam plugin component is mirrored about a line.



3.5 Useful CADEMIA Features in ruBeam Plugin 38

3.5.3 Copy components

Another typical CAD feature is copying. Based on the existing copy functionality in CADEMIA
nodes, elements and loads can be copied easily. It is distinguished between the different copy
modes:

Copy translate A ruBeam plugin component is cloned first and then translated about a vector.
This is the functionality most users would expect from copying.

Copy rotate A ruBeam plugin component is cloned first and then rotated about an angle and
a point.

Copy scale A ruBeam plugin component is cloned first and then scaled about a point.

Copy mirror A ruBeam plugin component is cloned first and then mirrored about a line.

3.5.4 User Coordinate System

In CADEMIA the user coordinate system can be set by applying a rotation and a translation
to the default coordinate system. The subsequently specified coordinates are related to the
current user coordinate system. Using this feature a set of angular elements can be constructed
very efficiently.



Appendix A

Examples

Here you find examples to show how to use ruBeam plugin and the ruBeam
engine, as well they show some specialities when using ruBeam engine as
subroutine in a Matlab program.
All files can be found on the ruBeam web page http://rubeam.cademia.

org under the documentation section.

A.1 Production Hall

First example is a simple production hall constructed in CADEMIA with the help of the
function copy mirror. After constructing the left side of the hall we copy mirrored it, cleaned
up the duplicated nodes and added the missing elements in the middle. Enclosed the ruBeam

Figure A.1: First part of the production hall

file phall.rb for the suspension bridge is listed.

http://rubeam.cademia.org
http://rubeam.cademia.org


A.1 Production Hall 40

1 // ruBeam 1 .0 beta , Copyright 2009 E. Bombasaro , Ch . Koch
2

3 //Nodes :
4 //−−−−−−−−−−−−−−−−−−−−−−−−−
5 addnode 0.0000000000 0.0000000000 n0 ;
6 addnode 0.0000000000 2.0000000000 n1 ;
7 addnode 0.0000000000 4.0000000000 n2 ;
8 addnode 2.0000000000 5.0000000000 n3 ;
9 addnode 2.0000000000 2.0000000000 n4 ;

10 addnode 4.0000000000 0.0000000000 n5 ;
11 addnode 4.0000000000 2.0000000000 n6 ;
12 addnode 4.0000000000 4.0000000000 n7 ;
13 addnode 2.0000000000 0.0000000000 n8 ;
14

15 // Elements :
16 //−−−−−−−−−−−−−−−−−−−−−−−−−
17 addelement n0 n1 e0 ;
18 addelement n1 n2 e1 ;
19 addelement n2 n3 e2 ;
20 addelement n1 n4 e3 ;
21 addelement n5 n6 e4 ;
22 addelement n6 n4 e5 ;
23 addelement n6 n7 e6 ;
24 addelement n7 n3 e7 ;
25 addelement n8 n4 e9 ;
26 s e t e l e m e n t h i n g e i e9 t rue ;
27 se te l ementh ingek e9 true ;
28 addelement n4 n3 e10 ;
29 s e t e l e m e n t h i n g e i e10 t rue ;
30 se te l ementh ingek e10 true ;
31

32 // Const ra in t s :
33 //−−−−−−−−−−−−−−−−−−−−−−−−−
34 s e tnodecons t s n0 NaN 0.0000000000 0 .0000000000 ;
35 s e tnodecons t s n5 NaN 0.0000000000 0 .0000000000 ;
36 s e tnodecons t s n8 NaN 0.0000000000 NaN;
37

38 //Element Loads :
39 //−−−−−−−−−−−−−−−−−−−−−−−−−
40 addelementconload e0 10000.0 90 .0 1 .0 F0 ;
41 adde lementunid i s loadnor e2 10000.0 q0 ;
42 adde lementunid i s loadnor e3 10000.0 q1 ;
43 addelementconload e4 10000.0 −90.0 1 .0 F1 ;
44 adde lementunid i s loadnor e5 10000.0 q5 ;
45 adde lementunid i s loadnor e7 10000.0 q4 ;
46

47 //Addendum :
48 //−−−−−−−−−−−−−−−−−−−−−−−−−
49 s e t v i s u a l i z e s t e p s 50 ;



A.2 Suspension Bridge 41

Figure A.2: The production hall after copy mirror command and cleaned nodes and loads

A.2 Suspension Bridge

Second example is a simple suspension bridge where the cables are modeld as thin beam ele-
ments.

Figure A.3: Screenshot of CADEMIA while working on the suspension bridge project



A.3 Advanced Examples using ruBeam engine 42

The ruBeam file sbridge.rb for the suspension bridge is not listed here because its too
long, you can download it from the ruBeam web page http://rubeam.cademia.org.

A.3 Advanced Examples using ruBeam engine

To show how smooth ruBeam engine is running, we minimize rotation angle ϕ of a simple frame
Fig. A.4(a) by changing the height of the beam element. The frame is loaded with the beam
weight plus traffic load and has a support imposed displacement of 0.05 m.

Fig. A.4(b) shows the functional dependency of the beam height h due to the rotation
angel ϕ of the node b as well as the steps made by the optimizer. In this case Newton Raphson
Method is used. Because in this example only the functionality of the ruBeam engine should
be show no special care to the optimization routine was given.
As result we obtain the beam height of 0.16 m.

(a) Screenshot taken from CADEMIA opti-
mized frame

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−8

−6

−4

−2

0

2

4
x 10−3

beam dim h

no
de

 ro
ta

io
n 

ph
i

 

 
Target Function
Newton Steps

(b) Matlab plot displaying the target function
blue and the optimization steps red +

The MATLAB files can be found in the documentation section on the ruBeam web page
http://rubeam.cademia.org. No special remarks are given here concerning the MATLAB
files, you find some comments in every single file.

http://rubeam.cademia.org
http://rubeam.cademia.org


Index

Symbols
//,10
;,10
CADEMIA, 1

commands, 24
construction, 37
copy, 38
features, 37
transform components, 37
user coordinate system, 38

ruBeam
engine, 8
file, 39
file management, 37
inspector, 30, 34
language, 9
menu, 28, 32
model, 1
plugin, 26

A
addelement,13
addelementbend,21
addelementconload,16
addelementleapdir,20
addelementleapnor,20
addelementmoment,18
addelementprestress,19
addelementunidisloadnor,17
addelementunidisloadsecdir,18
addelementunidisloadsecnor,17
addelementunidismomentsec,19
addgensection,13
addiprofsection,14
addnodalloadang,15
addnodalmoment,16
addnode,12
addrecsection,14
addsandsection,15
analyse,11

assignsection,22
autoanalysestate, 23

C
calc,10
clean,11
clear,11
command-line interpreter, 8
constraints

values, 21
coordinate

CADEMIA, 30
displacement, 3
element, 3
force, 3
geometrical, 3
loads, 4
results

elements, 5
node, 5

system, 3
user system, 38

D
dimensions, 7

E
example, 39
exit,11
export,10

H
help,10

I
import,10
inspector

element loads, 36
elements, 35
nodal loads, 35
nodes, 34
results, 36



INDEX 44

sections, 35
structure, 36

install
ruBeam engine, 9
ruBeam plugin, 27

J
java, 26

M
menu

element loads, 34
elements, 33
nodal loads, 34
nodes, 33
sections, 33

O
optimization, 42

P
production hall, 39
properties

elements, 22
nodes, 21
section, 22

R
remove,11
results,11
Rubin, 6

S
setelementhingei,22
setelementhingek,22
setelementname,22
setelementnodei, 22
setelementnodek,22
setnodeconstphi,22
setnodeconsts,22
setnodeconstx,21
setnodeconsty,22
setnodecoord,21
setnodefixed,22
setnodename,21
setnodex,21
setnodey,21
setresultsteps,23
setsectionai,23
setsectionak,23

setsectionb,23
setsectione,23
setsectionhi,23
setsectionhk,23
setsectionii,23
setsectionname,22
setsections,23
setsectiont,23
setvisualizesteps,23
show,11
stiffnessmatrix, 6
support, 31
suspension bridge, 41

T
transfer matrix, 6

U
units, 7

W
web page, 42
write,10


	ruBeam Model
	Introduction
	What can be done with ruBeam?
	General
	Coordinate System Definitions
	Preliminaries
	Dimensions

	Further Development on the ruBeam model

	ruBeam Engine
	General
	Installing ruBeam Engine

	ruBeam Engine Quick Start
	ruBeam Engine Language
	Basics
	ruBeam Components and their Commands
	ruBeam Handling Commands
	Set Node Properties [extend]
	Set Element Properties [extend]
	Set Section Properties [extend]
	Set System Properties [base]
	Recommended Command Sequence
	Generating ruBeam input files


	ruBeam Plugin
	Introduction
	General
	Installing ruBeam Plugin

	Preliminaries to CADEMIA plugin development
	ruBeam Plugin Architecture
	ruBeam Plugin Components
	ruBeam Plugin Commands
	ruBeam Inspector

	ruBeam Plugin Functionality
	General
	Coordinate System Definition
	Support Symbolism
	ruBeam Menu
	ruBeam Inspector
	ruBeam File Management

	Useful CADEMIA Features in ruBeam Plugin
	Construction
	Transform components
	Copy components
	User Coordinate System


	Examples
	Production Hall
	Suspension Bridge
	Advanced Examples using ruBeam engine

	Index

